Über diese Gleichung sind alle Punkte auf der Geraden definiert, sie sind vom Ortsvektor aus über den Richtungsvektor zu erreichen.
Eine Gerade im zweidimensionalen Raum kann durch die Normalenform bestimmt werden. Sie kann durch einen Stützvektor
Ein Punkt für dessen Ortsvektor
Der Stützvektor bleibt gleich. Für den Normalenvektor werden die Komponenten des Richtungsvektors und bei einer Komponente das Vorzeichen vertauscht.
Im zweidimensionalen Raum kann eine Gerade auch durch die Koordinatenform beziehungsweise als lineare Gleichung durch drei reelle Zahlen beschrieben werden.
Diese Form entsteht durch ausmultiplizieren der Normalenform.
Punkt mit Geradengleichung gleichsetzen, t berechnen (muss für jede ,,Zeile“ gleich sein).
[i] Quartl, Line equation qtl3, CC BY-SA 3.0
Sie befinden sich auf der AMP-Version dieses Artikels. Für spannende Empfehlungen und weitere Inhalte geht es hier zur Ursprungsseite (auch bei Anzeigefehlern empfehlenswert). Schauen Sie sich doch beispielsweise einmal den Zeitrahl zur Religionsktritik an.